
MER: a Minimal Named-Entity Recognition
Tagger and Annotation Server

Francisco M. Couto?, Luis F. Campos, and Andre Lamurias

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract. Named-Entity Recognition (NER) aims at identifying the
fragments of a given text that mention a given entity of interest. This
manuscript presents our Minimal named-Entity Recognizer (MER), de-
signed with flexibility, autonomy and efficiency in mind. To annotate a
given text, MER only requires a lexicon (text file) with the list of terms
representing the entities of interest; and a GNU Bash shell grep and awk
tools.
MER was deployed in a cloud infrastructure using multiple Virtual Ma-
chines to work as an annotation server and participate in the Technical
Interoperability and Performance of annotation Servers (TIPS) task of
BioCreative V.5. Preliminary results show that our solution processed
each document (text retrieval and annotation) in less than 3 seconds
on average without using any type of cache. MER is publicly avail-
able in a GitHub repository (https://github.com/lasigeBioTM/MER)
and through a RESTful Web service (http://labs.fc.ul.pt/mer/).

Key words: Named-Entity Recognition, Annotation Server, Text Min-
ing, Biomedical Ontologies, Lexicon

1 Introduction

Named-Entity Recognition (NER) aims at identifying mentions of entities in a
given text. To define which type of entities to recognize, state-of-the-art tools
usually require as input a training corpus. Their performance depends on the
availability of a large corpus with an accurate and comprehensive set of annota-
tions, which is usually arduous to create and maintain. Many other tools require
only as input a lexicon consisting in a list of terms within some domain, for ex-
ample a medical lexicon. A lexicon is normally much easier to find or to create.
The input text is then matched against the terms in the lexicon.

We propose a Minimal named-Entity Recognizer (MER) designed with flexi-
bility, autonomy and efficiency in mind. MER only requires a lexicon as input, in
the form of a text file, in which each line contains a term representing a named-
entity to recognize. MER makes really easy the addition of new lexicons. MER
is not only minimal in terms of the input but also in its implementation, which
was reduced to a minimal set of components and software dependencies. MER

? Corresponding author: fcouto@di.fc.ul.pt

2 Proceedings of the BeCalm challenge evaluation workshop

Fig. 1. Example of the contents of an input file representing compounds
CHEBI:18167, CHEBI:15940, CHEBI:15763 and CHEBI:76072.

α−maltose
n i c o t i n i c ac id
n i c o t i n i c ac id D−r i b onu c l e o t i d e
n i c o t i n i c acid−adenine d i nu c l e o t i d e phosphate

is then composed of just two components, one to process the lexicon (offline)
and another to produce the annotations (on-the-fly). Both were implemented as
a GNU Bash shell script1, mainly for two reasons: i) efficiency, due to its direct
access to high performance text and file processing tools, such as grep and awk;
and ii) portability, since the scripts can be executed in any Unix-like operating
systems (common in most servers) without requiring any additional software or
modifications.

MER was deployed in a cloud infrastructure to work as an annotation server
an participate in the Technical Interoperability and Performance of annotation
Servers (TIPS) task of BioCreative V.5 [2]. This participation allowed us to
assess the flexibility, autonomy and efficiency of MER in a realistic scenario. The
preliminary results show that our annotation server achieved good reliability and
performance indicators.

MER is publicly available in a GitHub repository2. The repository contains a
small tutorial to help the user start using the program and test it. The remainder
of this article will detail the MER tool, and how it was incorporated in our
annotation server to participate in TIPS. We end by analyzing and discuss the
preliminary results and present future directions.

2 MER

2.1 Input

Before being able to annotate any text, MER requires a lexicon with the list of
terms to match. So, if for example we want to recognize terms that are present
in ChEBI3, the user just has to collect all ChEBI terms and store them in a
text file, containing in each line one term representing a ChEBI entity. Figure 1
presents an example where four ChEBI compounds are represented by a list of
terms based on their ChEBI’s name. Currently MER is only performing NER,
in the future we may allow the option to include an accession number to each
line in the file in order to also perform entity linking.

1 https://www.gnu.org/software/bash/
2 https://github.com/lasigeBioTM/MER
3 https://www.ebi.ac.uk/chebi/

MER 3

Fig. 2. Each block represents the content of each of the four files created
after pre-processing the input file shown in Figure 1.

== one−word (. . . word1 . txt) =====================
α . maltose
== two−word (. . . word2 . txt) =====================
n i c o t i n i c ac id
== more−words (. . . words . txt) ===================
n i c o t i n i c ac id d . r i b onu c l e o t i d e
n i c o t i n i c ac id . adenine d i nu c l e o t i d e phosphate
== f i r s t −two−words (. . . words2 . txt) ============
n i c o t i n i c ac id
n i c o t i n i c ac id . adenine

Fig. 3. Example of a given sentence to be annotated (first line), and its
one-word and two-word patterns created by MER.

α−maltose and n i c o t i n i c ac id was found , but not
n i c o t i n i c ac id D−r i b onu c l e o t i d e

α . maltose | n i c o t i n i c | ac id | d . r i b onu c l e o t i d e | found | n i c o t i n i c | ac id

α . maltose n i c o t i n i c | ac id d . r i b onu c l e o t i d e | found n i c o t i n i c
| n i c o t i n i c ac id | d . r i b onu c l e o t i d e found | n i c o t i n i c ac id

Fig. 4. Output example of MER for the sentence in Figure 3 and the lexicon
in Figure 1

0 9 α−maltose
14 28 n i c o t i n i c ac id
65 79 n i c o t i n i c ac id
14 45 n i c o t i n i c ac id D−r i b onu c l e o t i d e

2.2 Pre-Processing

Each lexicon has to go through two pre-processing steps. The first step splits
the lexicon in three files containing the terms composed by one (one-word), two
(two-word) and three or more words (more-words). The second step creates a
fourth file containing the first two words (first-two-words) of all the terms in
the more-words file. During the above steps, MER makes the following minor
modifications to the terms: convert all text to lowercase; contiguous white spaces
are replaced by one white space; full stops are removed; leading and trailing white
spaces are removed; and all special characters are replaced by a full stop. Since
some special characters may cause matching problems, MER assumes that all
the special characters (characters that are not alphanumeric or a whitespace, for
example, hyphens) can be matched by any other character, so these characters
are replaced by a full stop, like in regular expressions. Figure 2 presents the
contents of each of the four files created using the terms shown in Figure 1.
Note that the word acid-adenine was replaced by acid.adenine, and the last file
presents the first two words of each entry in the third file.

4 Proceedings of the BeCalm challenge evaluation workshop

2.3 Recognition

Given an input text, and the name of the lexicon already pre-processed, the goal
is to identify which terms of the lexicon are mentioned in the text. The first step
of MER is to apply the same minor modifications to the input text as described
in the Pre-Processing section, but also remove stop words, and words with less
than 3 characters. This will result in a processed input text derived from the
original one. Note that MER only recognizes direct matches, if lexical variations
of the terms are needed they have to be added in the lexicon, for example by
using a stemming algorithm.

A common solution would be to apply grep directly to the input text. How-
ever, the execution time is proportional to the size of the lexicon, since each term
of the lexicon will correspond to an independent pattern to match. To optimize
the execution time we inverted this solution, i.e. we use the words in the pro-
cessed input text as patterns to be matched against the lexicon file. Since the
number of words in the input text is much smaller than the number of terms in
the lexicon, grep has much less patterns to match. For example, finding the pat-
tern nicotinic acid in the two-word chemical file created for TIPS is more than
100 times faster than using the common solution. This requires the creation of
two alternation patterns: i) one-word pattern, with all the words in the input
text; and ii) two-word pattern, with all the consecutive pairs of words in the
input text. Figure 3 shows an example of these two patterns.

Next, MER creates three background jobs to match the terms composed of:
i) one word, ii) two words, and iii) three or more words. The one-word job uses
the one-word pattern to find matching terms in the one-word file. Similarly for
the two-word job, that uses the two-word pattern and file. The last job uses the
two-word pattern to find matches in the two-first-word file, and the resulting
matches are then used as a pattern to find terms in the more-words file. The
last job is less efficient since it executes grep twice, however the resulting list
of matches with the two-first-word file is usually small, so the second execution
is negligible. In the end, each job will create a list of matching terms that are
mentioned in the input text.

Since the processed input text cannot be used to find the exact position of
the term, MER uses the list of matching terms to find their exact position in the
original input text. MER uses awk to find the multiple instances of each term
in the original input text. The awk tool has the advantage of working well with
UTF-8 characters that use more than one byte, in opposition to grep that just
counts the bytes to find the position of a match. MER provides partial overlaps,
i.e. a shorter term may occur at the same position as a longer one, but not full
overlapping matches (same term in the same position). We also developed a test
suite to refactor the algorithm with more confidence that nothing is being done
incorrectly. The test suite is available in the GitHub repository branch dedicated
to development4.

Figure 4 shows the output of MER when using as input text the sentence in
Figure 3, and the lexicon of Figure 1. Note that nicotinic acid appears twice at

4 https://github.com/lasigeBioTM/MER/tree/dev

MER 5

Fig. 5. Number of terms, words, and characters in the lexicons used in TIPS,
obtained by using the following shell command: wc -lmw *.txt.

#terms #words #char #f i l ename
116616 137702 1027369 CELL LINE AND CELL TYPE. txt
332167 446423 10397574 CHEMICAL. txt
26216 92688 808366 DISEASE . txt
73954 73954 991012 MIRNA. txt

597867 1372326 11863642 PROTEIN. txt
8146 26117 228167 SUBCELLULAR STRUCTURE. txt
5238 16283 126024 TISSUE AND ORGAN. txt

1160204 2165493 25442154 t o t a l

position 14 and 65, as expected, without affecting the match of nicotinic acid
D-ribonucleotide.

3 Annotation Server

TIPS is a novel task in BioCreative aiming at the evaluating the performance of
NER web servers, based on reliability and performance metrics. The entities to
be recognized were not restricted to a particular domain.

The web servers had to respond to single document annotation requests. The
servers had to be able to retrieve the text from documents in the patent server,
the abstract server and PubMed, without using any kind of cache for the text or
for the annotations. The annotations had to be provided in, at least, one of the
following formats: BeCalm JSON, BeCalm TSV, BioC XML or BioC JSON.

3.1 Lexicons

The first step to participate in TIPS was to select the data sources from which we
could collect terms related with the following accepted categories: Cell line and
cell type: Cellosaurus5; Chemical: HMDB6, ChEBI7 and ChEMBL8; Disease:
Human Disease Ontology9; miRNA: miRBase10; Protein: Protein Ontology11;
Subcellular structure: cellular component aspect of Gene Ontology12; Tissue
and organ: tissue and organ subsets of UBERON13.

All these data files suffered a post-extraction processing which consisted in
lowercasing all terms, deleting leading and trailing white spaces and removing

5 http://web.expasy.org/cellosaurus/
6 http://www.hmdb.ca/
7 https://www.ebi.ac.uk/chebi/
8 https://www.ebi.ac.uk/chembl/
9 http://www.obofoundry.org/ontology/doid.html

10 http://www.mirbase.org/
11 http://www.obofoundry.org/ontology/pr.html
12 http://www.geneontology.org/
13 http://uberon.github.io/

6 Proceedings of the BeCalm challenge evaluation workshop

Fig. 6. Output example of MER using BeCalm TSV format for the sentence
in Figure 3 and the lexicon in Figure 1

1 A 0 9 0.54488 α−maltose l e x i c on 1
1 A 14 28 0.621077 n i c o t i n i c ac id l e x i c on 1
1 A 48 62 0.621077 n i c o t i n i c ac id l e x i c on 1
1 A 48 79 0.708793 n i c o t i n i c ac id D−r i b onu c l e o t i d e l e x i c on 1

repeated terms. Since overlapping annotations were not allowed, we created an-
other lexicon containing terms that appeared on more than one of the other
lexicons. The terms matched to this lexicon were considered to be of the cat-
egory Unknown, as suggested by the organization. The software to extract the
list of terms from the above data sources can be found in the GitHub repository
branch dedicated to TIPS14.

Figure 5 shows the number of terms, the number of words, and the number
of characters of each lexicon created. MER was therefore recognizing more than
1M terms composed of more than 2M words and more than 25M characters. All
lexicons are available for reuse as a zip file 15.

3.2 Input and Output

We adapted MER to provide the annotations in the BeCalm TSV format. Thus,
besides the input text and the lexicon, MER had to receive also the document
identifier and the section as input. In Figure 6, the document identifier is 1 and
section is A. The score column is calculated by 1−1/ ln(nc), where nc represents
the number of characters of the recognized term. This is based on the assumption
that longer terms are less ambiguous, and in that case the match should have
a higher confidence score. Note that MER only recognizes terms with three or
more characters, so the minimum score is 0.08976 and the score is always lower
than 1. An instance of MER with this output format and using the lexicons
described above is available through a RESTful Web service16.

We used jq17 a command-line JSON processor to parse the requests. The
download of each document was implemented using the popular cURL tool, and
we developed a specific parser for each data source to extract the text to be
annotated. The parsers are also available at the TIPS branch18.

14 https://github.com/lasigeBioTM/MER/tree/biocreative2017/data_parsers
15 https://github.com/lasigeBioTM/MER/raw/biocreative2017/data/TIPS_MER_

lexicons_Jan2017.zip
16 http://labs.fc.ul.pt/mer/
17 https://stedolan.github.io/jq/
18 https://github.com/lasigeBioTM/MER/tree/biocreative2017/external_

services

MER 7

Patent Server Abstract Server PubMed Total

Total requests 88,556 135,938 92,811 317,305

Total predictions 1,388k 4,035k 2,766k 8,189k

Total processing time 2d 01h 4d 18h 3d 19h 10d 14h

Mean predictions/document 15.6 29.7 29.8 22.4

Mean processing time/document (s) 2.02 3.03 3.57 2.90

MDTV - - - 0.00238

MPDV - - - 0.0184

Table 1. Annotation server performance values at April 20, 2017. MTDV (mean time
in seconds per document volume) = Total processing time(s)/sum of document sizes
(bytes). MPDV (total predictions per document volume) = Total predictions/sum of
document sizes (bytes).

3.3 Infrastructure

Our annotation server was deployed in a cloud infrastructure composed of three
Virtual Machines (VM). Each VM had 8GB of RAM and 4 CPUs @ 1.7 GHz,
using CentOS Linux release 7.3.1611 (Core) as the operating system. We selected
one VM (primary) to process the requests, distribute the jobs, and execute MER.
The other two VMs (secondary) just execute MER. We installed the NGINX
HTTP server running CGI scripts given its high performance when compared
with other web servers [3]. We also used the Task Spooler19 tool to manage and
distribute within the VMs the jobs to be processed.

The server is configured to receive the REST API requests defined in the Be-
Calm API documentation. Each request is distributed to one of the three VMs
according to the least-connected method of NGINX. When a getAnnotations re-
quest is received, the server first downloads the documents from the respective
sources, and then processes the title and abstract of each document in the same
VM. Two jobs are spawned in background, corresponding to the title and ab-
stract. Each annotation server handles all the entity types mentioned in Figure
5, spawning a separate job for each entity type. The name of the entity type is
added as another column to the output of Figure 4. These jobs run in parallel
since they are independent from each other and the output of each job can be
easily merged into a final TSV output file. When a job finishes processing, a
script checks if the other jobs associated with the same requests have also fin-
ished processing. If that is the case, then the results of every job are concatenated
and sent back to BeCalm using the saveAnnotations method.

3.4 Results

Table 3.3 presents the performance values for our annotation server available at
the BeCalm web interface on April 20, 2017. Our minimal annotation server was
able to efficiently process the documents by taking less than 3 seconds on average

19 http://vicerveza.homeunix.net/~viric/soft/ts/

8 Proceedings of the BeCalm challenge evaluation workshop

without using any type of cache. We note that all documents, irrespectively of
the source, were annotated using all the entity types presented in Section 3.1.

We compared the time necessary to process the same sentence on the same
hardware using MER and a more complex machine learning system, IBEnt [1],
using the sentence of Figure 3. While IBEnt took 8.25 seconds to process the
sentence, MER took only 0.098 seconds. Although IBEnt is optimized for batch
processing, therefore reducing the time per document as the number of docu-
ments increases, MER is still 84 times faster than IBEnt in this experiment.
Thus, besides being easy to install and configure, MER is also a highly efficient
and scalable NER tagger.

4 Conclusions

We presented MER a minimal NER tagger that was developed with the con-
cepts of flexibility, autonomy and efficiency in mind. MER is flexible since it
can be extended with any lexicon composed of a simple list of terms. MER is
autonomous since it only requires a GNU Bash shell with awk and grep tools,
which are omnipresent in almost any Unix-like operating systems. MER is effi-
cient since it takes advantage of the high-performance capacity of grep as a file
pattern matcher.

MER was integrated in an annotation server deployed in a cloud infras-
tructure for participating in the TIPS task of BioCreative V.5. Our server was
fully developed in-house with minimal software dependencies and is open-source.
Without using any kind of cache, our server was able to process each document
in less than 3 seconds on average. In the future, we intend to implement the en-
tity linking functionality in MER, without undermining its flexibility, autonomy
and efficiency.

Acknowledgments. This work was produced with the support of the Por-
tuguese National Distributed Computing Infrastructure (http://www.incd.pt).
This work was supported by FCT through funding of the LaSIGE Research Unit,
ref. UID/CEC/00408/2013

References

1. Lamurias, A., Filipe, L., Couto, F.M.: IBEnt: Chemical Entity Mentions in Patents
using CheBI. Proceedings of the BioCreative V.5 Challenge Evaluation Workshop
(2017)

2. Perez, M.P., Rodriguez, G.P., Mguez, A.B., Riverola, F.F., Valencia, A., Krallinger,
M., Lourenco, A.: Benchmarking biomedical text mining web servers at BioCreative
V.5: the technical Interoperability and Performance of annotation Servers - TIPS
track. In: Proceedings of the BioCreative V.5 Challenge Evaluation Workshop. pp.
12–21 (2017)

3. Reese, W.: Nginx: the high-performance web server and reverse proxy. Linux Journal
2008(173), 2 (2008)

